skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bebieva, Yana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. The ice shelves of the West Antarctic Ice Sheet experience basal meltinginduced by underlying warm, salty Circumpolar Deep Water. Basal meltwater,along with runoff from ice sheets, supplies fresh buoyant water to acirculation feature near the coast, the Antarctic Coastal Current (AACC). The formation, structure, and coherence of the AACC has been well documented along the West Antarctic Peninsula (WAP). Observations from instrumented seals collected in the Bellingshausen Sea offer extensive hydrographic coverage throughout the year, providing evidence of the continuation of the westward flowing AACC from the WAP towards the Amundsen Sea. The observations reported here demonstrate that the coastal boundary current enters the eastern Bellingshausen Sea from the WAP and flows westward along the face of multiple ice shelves, including the westernmost Abbot Ice Shelf. The presence of the AACC in the western Bellingshausen Sea has implications for the export of water properties into the eastern Amundsen Sea, which we suggest may occur through multiple pathways, either along the coast or along the continental shelf break. The temperature, salinity, and density structure of the current indicates an increase in baroclinic transport as the AACC flows from the east to the west, and as it entrains meltwater from the ice shelves in the Bellingshausen Sea. The AACC acts as a mechanism to transport meltwater out of the Bellingshausen Sea and into the Amundsen and Ross seas, with the potential to impact, respectively, basal melt rates and bottom water formation in these regions. 
    more » « less
  2. Abstract Temperature and salinity measurements of a warm‐core eddy at the northern flank of the Ross Gyre are analyzed for dominant mixing mechanisms. The eddy is centered at the depths of the Circumpolar Deep Water and carries heat towards the gyre. Vertical and horizontal heat fluxes out of the eddy associated with internal wave turbulent mixing and thermohaline intrusions are estimated. Upward internal wave turbulent heat flux isW, whereas, the lateral intrusive heat flux is of the order ofW. The horizontal flux due to intrusions is suggested to be the dominant mechanism for eddy decay and yields an eddy lifetime of about 6 months. The thermohaline intrusion‐eddy suppression mechanism is proposed and shown to be effective in suppressing the eddy field at the northern flank of the Ross Gyre. This effect has important implications for setting the basin‐wide heat budget and regulating sea‐ice cover. 
    more » « less
  3. Abstract New fine‐scale observations from the central Ross Gyre reveal the presence of double‐diffusive staircase structures underlying the surface mixed layer. These structures are persistent over seasons, with more developed mixed layers within the double‐diffusive staircase in winter months. The sensitivity of the ice formation rate with respect to mixing processes within the main pycnocline (double‐diffusive versus purely turbulent mixing) is investigated with the 1‐D model. A scenario with purely turbulent mixing results in significant underestimates of sea ice thickness. However, a scenario when double‐diffusive mixing operates in the presence of weak shear yields plausible ranges for sea ice thickness that agrees well with the observations. The model results and observations suggest a peculiar feedback mechanism that promotes the self‐maintenance of double‐diffusive staircases. Suppression of the vertical heat fluxes due to the presence of a double‐diffusive staircase, compared to purely turbulent case, allows Upper Circumpolar Deep Water to be more exposed to surface buoyancy fluxes. Our results shed light on the process—double diffusion—that might account for estimated rates of winter water mass transformation in the central Ross Gyre. 
    more » « less